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Birth-Death Processes
Solving general Markov chain can be difficult
Simpler, constrained version: birth-death process

Transitions are only allowed between neighboring states
Transition rates: birth rate λk and death rate μk

Birth-death process:

Matrix form:
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Steady State of Birth-Death Processes
Steady state equations:

0 = -π0λ0+π1μ1

0 = -πk(λk+μk)+πk-1λk-1+πk+1μk+1

Solving for π:
π1=λ0/μ1 π0

π2=λ0 λ1 /(μ1μ2) π0

In general:                      , k ≥ 1

What about π0?
Sum of probabilities must be 1

Convergence criterion: ∃k0, ∀k>k0: λk/μk<1
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Birth-Death Process Example
Simplest example

All birth rates are the same (=λ)
All death rates are the same (=μ)

Solve π0:

Then πk:

Represent utilization ρ=λ/μ
πk=(1-ρ)ρk

Geometric distribution (with parameter p=(1-ρ))
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Birth-Death Process Example
Mean number of customers in system:

With Little’s law:
T=N/λ=1/μ/(1-ρ)
Q=ρ2/(1-ρ)

So, finally:
With increasing load,
queue length and
waiting time increase
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Kendall’s Notation
There are many different queuing systems
Notation indicates type of arrival and service

M – Exponential distribution (memoryless)
D – Deterministic distribution
G – General distribution
…

Queuing discipline indicates
Arrival process
Service process
Number of servers

E.g.: M/M/1
Simplest case (previous example)
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M/M/1 queuing model
M/M/1 results:

Birth-death process with λ and μ
» πk=(1-ρ)ρk

» π0=1-ρ
Average number of jobs in system

» K=ρ/(1-ρ)
Average response time

» T=N/λ= 1/(μ·(1-ρ))
Mean queue length

» Q=ρ2/(1-ρ)

What are the assumptions?
Exponentially distributed
interarrival and service times
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M/G/1 queuing model
Service time is not exponentially distributed

What does packet transmission time depend on?
» Packet size
» Link speed (constant)

We need different model
“Generalized” distribution for service time

How can we model such a service time?
From point of view of arriving job
Waiting time depends on

» Remaining service time of current job (W0)
» Sum of mean service times of jobs in queue (Q·E[X])

Thus, W=W0+Q·E[X]
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M/G/1 queuing model
Expected service time is independently distributed

Use Little’s law
» W=W0+Q·E[X] = W0+λ·W·E[X]

With E[X]=1/μ
» W=W0+ρ·W

Solve for W
» W=W0/(1-ρ)

What is value of W0?
Depends if server is busy or not
W0=P[busy]·R+P[not busy]·0

How can we determine “mean residual life” R?
Result from Kleinrock

» R=1/2·E[X2]/E[X]=1/2·E[X](1+cX
2)

cX
2, where c is coefficient of variation

cX=σX/E[X] (normalized standard deviation)
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M/G/1 queuing model
Total waiting time: 

W=W0/(1-ρ)=ρ/(1-ρ)·1/2·E[X](1+cX
2)

With Little’s law (Q=λ·W) and E[X]=1/μ:

Pollaczek-Khintchine formula

Sanity check:
Exponential distribution for G

» σX
2=1/λ2, E[X]=1/λ, cX=σX/E[X]=1

» Q=ρ2/(1-ρ)
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M/D/1 queuing model
Deterministic service time
Examples

Service of “requests”
» Web page
» DNS lookup

Memory access

Coefficient of 
variation cX

2=0
Queuing time

Q=1/2·ρ2/(1-ρ)
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M/G/1 – M/M/1 comparison
How much do M/G/1 and M/M/1 differ?

Assume network traffic
M/M/1

» Service time exponentially distributed
M/G/1

» Service time proportional to packet size

Queue length
M/G/1 queue shorter if
Need cX

2 for packets

What is the distribution of packet lengths?
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Packet length distribution
From NLANR:

E[X]=354
E[X2]=357355
σX=598
cX=1.687
cX

2=2.844

Thus

M/M/1 is too 
optimistic
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Homework
Read

Nick McKeown, Pravin Varaiya, and Jean Walrand, 
“Scheduling cells in an input-queued switch,” IEEE 
Electronics Letters, vol. 29, no. 25, pp. 2174–2175, Dec. 
1993. 

SPARK
Assessment quiz


