University of
Massachusetts

Ambherst
ECEG697AA — Lecture 17

Queuing Systems Il

Tilman Wolf
Department of Electrical and Computer Engineering
11/04/08

Birth-Death Processes

= Solving general Markov chain can be difficult

= Simpler, constrained version: birth-death process
* Transitions are only allowed between neighboring states
* Transition rates: birth rate A, and death rate p,

= Birth-death process:
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Steady State of Birth-Death Processes

= Steady state equations: A A 0 0
e 0= -mphg+my o = (At ) A 0
* 0 = -mOut )+ Mea et Mes © | o g ) A

. 0 0 s _(je"'/‘a)
= Solving for n«: : : : P

* m=ho/py Ty

o M=o Ay /(1) o

g
His

k-1
* In general: 7 =[]
i=0
= What about r,?
e Sum of prlobabilitieslmust be 1

Ty = =

k-1 ﬂ, o k-1 /1
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e Convergence criterion: 3kg, Vk>k,: A, /p, <1
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Birth-Death Process Example

= Simplest example
e All birth rates are the same (=)
e All death rates are the same (=)

= Solve ny: 7= N = T =1-

= Represent utilization p=A/u
* m=(1-p)p*
= Geometric distribution (with parameter p=(1-p))
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Birth-Death Process Example

= Mean number of customers in system:

« N=>kem =3k (1-p)p" =1_L
k=1 k=1 P

10

MM ——

= With Little’s law:
o T=N/A=1/u/(1-p) N
* Q=p?/(1-p)

= So, finally:
* With increasing load,

queue length and
waiting time increase Ak

mean queue length
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Kendall’'s Notation

There are many different queuing systems
Notation indicates type of arrival and service
* M — Exponential distribution (memoryless)
e D — Deterministic distribution
e G — General distribution

Queuing discipline indicates

e Arrival process

* Service process

* Number of servers

E.g.: M/M/1

* Simplest case (previous example)
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M/M/1 queuing model

= M/M/1 results:
* Birth-death process with A and p
» m=(1-p)pk

» me=1-p
* Average number of jobs in system
» K=p/(1-p)
* Average response time 0

» T=N/A= 1/(u-(1-p))
* Mean queue length
» Q=p?/(1-p)
= What are the assumptions?

* Exponentially distributed
interarrival and service times

mean queue length
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M/G/1 queuing model

= Service time is not exponentially distributed
* What does packet transmission time depend on?
» Packet size
» Link speed (constant)
= We need different model
* “Generalized” distribution for service time

= How can we model such a service time?
* From point of view of arriving job
* Waiting time depends on
» Remaining service time of current job (W)
» Sum of mean service times of jobs in queue (Q-E[X])
* Thus, W=W,+Q-E[X]
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M/G/1 queuing model

= Expected service time is independently distributed
* Use Little’s law
» W=Wy+Q-E[X] = Wy+A-W-E[X]
* With E[X]=1/n
» W=Wy+p-W
* Solve for W
» W=Wy/(1-p)
= What is value of W,?
* Depends if server is busy or not
* W,=P[busy]-R+P[not busy]-0
= How can we determine “mean residual life” R?
* Result from Kleinrock
» R=1/2-E[X2)/E[X]=1/2-E[X](1+c\?)
= c,?, where c is coefficient of variation
= c,=0,/E[X] (normalized standard deviation)
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M/G/1 queuing model
= Total waiting time:
* W=W,/(1-p)=p/(1-p)-1/2-E[X](1+cC\?)
= With Little’s law (Q=A-W) and E[X]=1/p:
o-_ £ @+eh)_ pt 1 EXY]
A-p) 2 1-p) 2 E[XT
¢ Pollaczek-Khintchine formula
= Sanity check:
* Exponential distribution for G
» 6,2=1/22, E[X]=1/A, c,=c,/E[X]=1
» Q=p2/(1-p)
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M/D/1 queuing model

Deterministic service time

Examples

¢ Service of “requests”
» Web page MDA ——m-
» DNS lookup 8
* Memory access

Coefficient of
variation c,2=0
* Queuing time
* Q=1/2-p?/(1-p) 2t

mean queue length

utilization rho
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M/G/1—M/M/1 comparison

= How much do M/G/1 and M/M/1 differ?
* Assume network traffic
e M/M/1
» Service time exponentially distributed
* M/G/1
» Service time proportional to packet size
= Queue length | o 1+cd)  p
* M/G/1 queue shorter if : <
) l-p) 2 1-p)
* Need c,? for packets
= What is the distribution of packet lengths?

2
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Packet length distribution

= From NLANR:
* E[X]=354
* E[X?]=357355
* 5,=598
* c,=1.687
* c,2=2.844

* Thus

(L+cy”) _ (L+2.844) 1
2 2

= M/M/1 is too
optimistic
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Homework

= Read

* Nick McKeown, Pravin Varaiya, and Jean Walrand,
“Scheduling cells in an input-queued switch,” IEEE
Electronics Letters, vol. 29, no. 25, pp. 2174-2175, Dec.
1993.

= SPARK
* Assessment quiz
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